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A B S T R A C T   

Though vibration energy harvesting technology has been extensively explored in the past decades, harnessing 
energy from thermally induced vibration has been rarely investigated. This study, for the first time, proposes a 
piezoelectric energy harvester (PEH) excited by time-varying thermal loading in outer space to power wireless 
electronics in antenna panels of satellites. A novel thermal-mechanical-electrical coupling model is developed to 
accurately predict the dynamic response of the system. Firstly, based on the comprehensive analysis of spatial 
heat fluxes, the transient thermal conduction equations are derived via the variational principle. Subsequently, 
different from conventional incremental finite elements, the thermoelasticity of the panel is characterized by the 
absolute nodal formulation. Taking advantage of invariant matrices, an enhanced mathematical model is con-
structed to improve the computational efficiency of the thermoelastic forces and their Jacobian matrices. 
Furthermore, an electromechanically-coupled analytical model is put forward for the PEH installed on the an-
tenna panel. Finally, an integrated computational framework is established to iteratively solve the multi-physics 
coupled problem with second-order accuracy. A corresponding finite element model is also built for verification. 
The effectiveness and efficiency of the developed multi-physics model are demonstrated through a comparison 
with the simulation results. In particular, the proposed analytical model not only considers the bidirectional 
interaction between the elastic deformation and heat absorption, but also incorporates the coupling relationship 
between the piezoelectric effect and structural vibration. Moreover, the investigation results provide pivotal 
insights into the design of the energy harvesting system excited by thermally induced vibration.   

1. Introduction 

With the increasing demand for high-resolution satellites, intelligent 
sensors and actuators are implemented in antennas to realize deforma-
tion monitoring and dynamic adjustment [1–3]. Such distributed control 
systems can improve the shape accuracy of panels without human 
intervention [4–6]. Given the harsh service conditions in outer space, 
wires and associated connectors have a high risk of failure [7,8], thus 
wireless devices are preferred. Solar batteries are currently the most 
frequently used energy source for spacecraft equipment. However, solar 
energy is not always the optimal choice for those scattered low-power 
wireless electronics [9] because of the limited performance adapt-
ability and high allocation cost of solar batteries [10]. In this context, 
other alternative solutions are desired to enable high design flexibility 
[11,12], which is also critical for high-performance autonomous remote 

devices [13]. 
In addition to the solar energy in outer space, the vibration energy of 

antennas could also be harnessed and converted into electricity to pro-
vide a potential power supply solution. According to the literature, there 
are four common mechanical-to-electrical energy conversion mecha-
nisms [14], namely electromagnetic, electrostatic, triboelectric, and 
piezoelectric transductions [15]. Electromagnetic transductions make 
use of external mechanical excitation to change the magnetic flux across 
the coil [16], and two strategies can be derived from the principle [17]: 
either creating a relative movement between the magnet and coil, or 
applying self-actuated ferromagnetic materials. However, the intro-
duced magnetic field may deteriorate the polarization performance of 
antennas [18] so that the above approaches of electromagnetic trans-
duction are not applicable. Electrostatic harvesters take the form of 
variable capacitors, whose capacitance varies with the displacement of 
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movable electrodes. Although electrostatic transductions are more 
competitive in compact size and compatibility to the system, they 
require external voltage sources to apply potential on electrodes. 
Moreover, on the condition of off-axis vibrations, the rotation of combs 
may trigger collisions between the capacitors [19], thereby causing se-
vere damage to the electrostatic harvesters. Triboelectric transductions 
are based on the periodic separation and contact of two objects with 
opposite triboelectric properties which create induced charge flow via 
external loads [20]. However, triboelectric energy harvesters have the 
deficiencies of low reliability and stretchability [21]. Piezoelectric 
transductions employ piezoelectric materials to directly convert me-
chanical strain into electrical potential. Due to the simple architectures 
and high energy density, piezoelectric transducers are more durable and 
reliable [22] as compared to the other counterparts. Therefore, using 
piezoelectric transducers to harness energy from the vibrations of an-
tenna panels is a promising scheme. 

Numerous efforts have been devoted to developing diverse piezo-
electric energy harvesters (PEHs) in the past two decades. A variety of 
designs have been proposed based on beams [23], shells [24], and plates 
[25] for different engineering applications [26–28]. Meanwhile, various 
theoretical models, ranging from the lumped parameter model [29,30], 
the Rayleigh–Ritz approximate distributed parameter model [31,32], to 
the closed-form distributed parameter model [33,34], have been 
established to predict the dynamic responses of PEHs. Erturk and Inman 
[35] pointed out that classical lumped models are sometimes over-
simplified. In particular, when sophisticated interfaces and boundary 
conditions are considered, it becomes challenging to obtain the analyt-
ical solution to multi-degree-of-freedom systems. To address these is-
sues, electromechanical finite element models have been constructed to 
predict the electrical power outputs of PEHs [36–38]. These discretized 
approaches boosted the numerical techniques for characterizing elec-
tromechanical behaviors. For example, Yang and Tang [39] derived the 
system parameters of a piezoelectric cantilever energy harvester via 
finite element analysis, and obtained a multi-mode equivalent model. In 
addition to commercial software, customized finite element formula-
tions were also developed to reduce the computational cost. According 
to the generalized Hamilton’s principle, Fattahi and Mirdamadi [40] 
constructed a finite element discretization model where the strain, 
displacement and electric potential were decomposed into longitudinal 
and cross-sectional components. Ramirez et al. [41] presented a 
one-dimensional nonlinear finite element for modeling 
three-dimensional rotational energy harvesters, where the electrome-
chanical equilibrium motion equations were derived by following the 
D’Alembert principle. Ravi and Zilian [42] introduced a monolithic 
finite element formulation to compute the natural frequencies and the 
corresponding mode shapes of a PEH. They converted the coupled 
governing equations into a single integral form with six independent 
fields. According to the literature review [43,44], most finite element 
formulations focused only on the electromechanical coupling effect of 
piezoelectric plates/shells with a static point load. However, cases under 
distributed and time-varying loads have been rarely investigated. 

Like other on-orbit spacecraft, antenna panels suffer from periodic 
heating and cooling, with the temperature ranging from − 70 to 120 ℃ 
[45]. For instance, the transition between sunlight and shadow regions 
induces significant temperature changes and time-dependent bending 
moments [46], leading to structural vibrations of antenna panels [4,47]. 
In this circumstance, thermally induced vibration analysis becomes the 
premise of predicting the electromechanical behaviors of PEHs installed 
on the antenna panels. According to whether the thermal deformation 
reversely affects heat exchange, existing approaches can be divided into 
two categories for the response analysis of thermally induced vibration: 
partially and fully coupled models. Bless et al. [48] investigated the 
transient thermal response of a flexible panel by adopting the Von 
Karman strain–displacement formula. Liu and Lu [49] extended the 
hybrid coordinate formulation to derive the structural deformation of an 
elastic beam under thermal disturbance. Although the nonlinear 

geometric effect was considered in [48,49], the actual thermomechan-
ical interaction was overlooked by directly assuming a priori tempera-
ture profile on the physical surface. In the rigid-flexible-thermal 
coupling analysis, Daneshjo and Ramezani [50] developed a mixed 
finite element formulation to predict the thermoelastic response of 
composite plates, but the effects of energy dissipation in the mechanical 
work on the temperature field were not taken into account [51]. Using 
generalized linear thermoelasticity theories, Kar and Kanoria [52] 
determined the thermo-elastic interaction due to a step-input of tem-
perature on the boundaries. Wang et al. [53] derived a unified gener-
alized thermoelasticity solution for the transient thermal shock problem 
within the framework of three thermoelasticity theories. However, most 
thermoelastic models were constrained to fixed coordinate systems. Liu 
and Pan [54] employed the floating frame of reference formulation to 
reveal the rigid-flexible-thermal coupling effect of an orbiting satellite. 
Taking advantage of the absolute nodal coordinate formulation in 
describing large deformation, Liu et al. [55] proposed a novel combined 
approach with the natural coordinate formulation for the dynamic 
analysis. They also developed an efficient formulation for evaluating the 
elastic forces and their Jacobians. Later, Shen et al. [56] conducted a 
coupled thermal–structural analysis for the thermally induced vibration 
of a thin-walled tubular boom. Based on the absolute nodal coordinate 
formulation, Cui et al. [57] derived a plate element that could integrate 
the heat transfer and dynamic analysis via a unified description. In 
addition, it is worth mentioning that although some low-grade thermal 
energy harvesting technologies, such as thermoelectric generators [58], 
have been proposed, they rely on the thermoelectric, pyroelectric, and 
thermomagnetic effects [59]. In general, piezoelectric energy harvesting 
from thermally induced vibrations of aerospace structures has yet been 
discussed in the literature. 

As reviewed above, no analytical model is available to predict the 
dynamic responses of PEHs under thermally induced vibration. This 
paper, for the first time, proposes to utilize the piezoelectric effect to 
harness the strain energy from the thermally induced vibration of an 
antenna in outer space. To tackle this challenge, a novel rigorous 
theoretical framework is developed to reveal the electro-mechanical- 
thermal conversion characteristics of the developed PEH. The main 
novelties and contributions are summarized as follows. (1) Unlike 
extensively studied thermal energy harvesters that utilize thermoelectric 
materials and pyroelectric generators, the proposed system converts 
thermally induced vibration into electricity via the piezoelectric effect. 
(2) Instead of partially coupled approaches, a complete analytical 
methodology with the full consideration of interactions is established to 
model the multi-physics involved dynamic process of harvesting energy 
from the structural vibration induced by time-varying thermal loads. (3) 
A novel computational framework for dynamic thermoelastic analysis is 
developed with the absolute nodal coordinate formulation, not only the 
thermoelastic forces and corresponding Jacobian matrices are evaluated 
efficiently, but also the governing equations of the whole system are 
synchronously solved with second-order accuracy. 

The rest of this paper is organized as follows. Section 2 elaborates on 
the thermal environment of an on-orbit satellite in outer space and de-
rives the transient heat conduction of the antenna panel. Section 3 an-
alyzes the thermoelasticity of the antenna panel with the absolute nodal 
coordinate formulation. Section 4 presents the electromechanical anal-
ysis of the piezoelectric transducer. In Section 5, by taking the electro- 
mechanical-thermal coupling effect into account, an integrated frame-
work is established to predict the performance of the PEH. Section 6 
provides a representative case study for proof-of-concept and to validate 
the proposed method. Finally, conclusions are outlined in Section 7. 

2. Thermal analysis and heat conduction 

Antenna panels are subjected to multiple thermal loads in outer 
space, including solar radiation fluxes, Earth-emitted heat radiation 
fluxes, Earth-reflected heat radiation fluxes, and surface radiations. 
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Moreover, the thermal load of the antenna panel varies with time. To 
characterize the effect of these external heat fluxes on antenna panels, 
this section will quantify these time-varying thermal loads and develop 
an analytical model of heat conduction. 

2.1. Thermal loading analysis 

As depicted in Fig. 1, the heat fluxes change periodically when the 
antenna moves among the light, twilight, and shadow zones. To reveal 
the heat conduction process, the external heat fluxes are to be formu-
lated for the antenna panel in orbit. 

As shown in Fig. 1, Rs and Re denote the radii of the Sun and the 
Earth, respectively. Rse denotes the distance between the Sun and the 
Earth. For convenience, three angles γ1, γ2, and γ3 are defined to describe 
the attitude of the satellite. According to the geometric relationship, 
these angles can be derived as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1= acrsin
Re

Re + Ha

γ2= acrsin
Rs

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
se + (Re + Ha)

2
− 2Rse(Re + Ha)cosφ

√

γ3= acrsin
Rse|sinφ|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
se + (Re + Ha)

2
− 2Rse(Re + Ha)cosφ

√

, (1)  

where Ha is the satellite orbit height, and φ is illustrated in Fig. 1. From 
the respective of projective geometry, the position of the satellite can be 
determined by the following criteria: (1) if γ3 ≥ γ1 + γ2, the satellite is in 
the light zone; (2) if γ3 – γ2<γ1<γ2 + γ3, the satellite enters the twilight 
zone; (3) if γ1 ≥ γ2 + γ3, the satellite goes into the shadow zone. 

With the modification of angle factors in heat transfer [47], the solar 
radiation flux qs absorbed by the panel is formulated as: 

qs = αmS0ψ1, (2)  

where αm represents the solar absorptivity of the antenna panel, the solar 
heat flux S0 is approximately 1350 W/m2, and the albedo view factor ψ1 
can be calculated by: 

ψ1 = f (t)cosαθ, (3)  

where αθ represents the incident angle between the sunlight and the 
normal vector of the antenna surface, and f (t) is associated with the 
antenna attitude so that it is a function of time t. In detail, we have [60]: 

f (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, in shadowzone

1 −

(
γ1

γ2

)2[χ1

π −
sin(2χ1)

2π

]

+

[
χ2

π −
sin(2χ2)

2π

]

, in twilightzone

1, in lightzone

.

(4)  

where the intermediate variables χ1 and χ2 are represented as: 

χ1 = arccos
(

γ2
3 + γ2

1 − γ2
2

2γ3 γ1

)

, χ2 = arccos
(

γ2
3 + γ2

2 − γ2
1

2γ3 γ2

)

. (5) 

The Earth-emitted radiation qe absorbed by the panel is determined 
by: 

qe = αeSeψ2. (6)  

where αe is the absorptivity of Earth-emitted radiation, and the heat flux 
of Earth-emitted radiation Se is 237 W/m2. The view factor ψ2 depends 
on the spatial geometric relation between the panel surface and the 
Earth, which is expressed as: 

ψ2 =
1
π

∫

φ

∫

θ

(cosθcosβ + sinθsinβcosφ)sinθdθdφ. (7) 

Here, the spherical coordinate frame (θ, φ) is developed for 
describing the surface of the Earth as shown in Fig. 2, and β represents 
the angle between the normal vector of the panel and the connecting line 
from the Earth to the satellite. Due to the symmetry of the Earth, the 

Fig. 1. Schematic of the thermal environment of an on-orbit satellite. 
The satellite periodically travels through the light, twilight, and 
shadow zones. Rs and Re are the radii of the Sun and the Earth, 
respectively. The distance between the Sun and the Earth is 
denoted by Rse. The point Ps represent the barycenter of the sat-
ellite. PsTs is the tangent line between the satellite and the Sun, 
while PsTe is the tangent line between the satellite and the Earth. 
φ is the angle between the lines OeOs and OePs; γ1 is the angle 
between the lines PsTe and PsOe; γ2 is the angle between the lines 
PsTs and PsOs; and γ3 is the angle between the lines PsOe and PsOs.   

Fig. 2. Earth-reflected heat radiation flux. The heat flux reflected by the Earth 
varies with the location on the Earth surface. The total Earth-reflected heat flux 
absorbed by the antenna panel should be integrated over the whole surface. For 
convenience, a spherical coordinate frame (θ, φ) is developed to describe the 
surface of the Earth. The point P is located at the antenna panel. L is the length 
of the connecting line from the point P to the surface. α1 is the angle between 
the connecting line and the normal vector of the surface. α2 is the angle be-
tween the connecting line and POe. β represents the angle between POe and the 
normal vector of the panel. αθ is the angle between the sunlight and the normal 
vector of the panel. 
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above integral is only related to β and the orbital height Ha, and it can be 
calculated as follows [61]: 

ψ2 =

⎧
⎪⎪⎨

⎪⎪⎩

K2cosβ, 0 ≤ β ≤ acosK

K2cosβ + b, acosK < β < π − acosK

0, π − acosK ≤ β ≤ π

. (8) 

The geometric variables K and b are given by: 

K =
Re

Re +Ha
, b

=
1
π

(
π
2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − K2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2 − cos2β

√
− asin

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − K2

√

sinβ
− K2cosβ acos

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − K2

√

Ktanβ

)

.

(9) 

As depicted in Fig. 2, the Earth-reflected radiation qr received by the 
panel is formulated as: 

qr = αmS0ρeψ3, (10)  

where ρe is the fraction of solar radiation reflected by the Earth, and the 
thermal coefficient ψ3 is calculated by: 

ψ3 =

∫

φ

∫

θ

cosψ31cosψ32cosψ33

πL2 R2
esinθdθdφ. (11) 

In particular, ψ31, ψ32 and ψ33 satisfy the following expressions [54]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosψ31 =

{
cosη, 0 ≤ η ≤ π/2

0, π/2 < η ≤ π

cosψ32 =

{
cosα1, 0 ≤ α1 ≤ π/2

0, π/2 < α1 ≤ π

cosψ33 =

{
cosα2, 0 ≤ α2 ≤ π/2

0, π/2 < α2 ≤ π

. (12) 

The geometric relationships among θ, φ, η, α1 and α2 are given by: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cosη = cosθcosϕ + sinθsinϕcosϕ

cosα1 =
Re + Ha

L

(

cosθ −
Re

Re + Ha

)

cosα2 =
Re

LK
((1 − Kcosθ)cosβ + Ksinθsinβcosϕ)

, (13)  

where the distance L is expressed as: 

L =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
e + (Re + Ha)

2
− 2Re(Re + Ha)cosθ

√

. (14) 

In addition to these heat fluxes, the antenna panel itself also emits 
radiation into outer space. Note that the temperature of the upper sur-
face of the antenna panel is generally different from that its lower sur-
face, their radiations of the upper and lower surfaces qu

r and ql
r are 

expressed as: 

qu
r = ςpσp(Tu − Tc)

4
, ql

r = ςpσp(Tl − Tc)
4
, (15)  

where ςp denotes the emissivity of the panel surface, and σp is the Ste-
fan–Boltzmann constant that equals 5.67 × 10–8 W/(m2 K4). Tu and Tl 
are the temperatures of the upper and lower surfaces, respectively. Tc is 
the temperature of the outer space. 

2.2. Formulation of heat conduction 

According to the Fourier’s law and three boundary conditions, the 
transient temperature field of the antenna panel takes the following 
form:  

where ρa is the material density; c is the specific heat capacity; Va and Sa 
denote the volume and the surface area of the antenna panel, respec-
tively; Qp is the internal heat source density; kx, ky and kz are the con-
ductivity coefficients along the x, y and z directions, respectively; qu and 
ql are the heat fluxes of the upper and lower surfaces, respectively; and 
hT is the convective exchange coefficient. 

Using the finite element method, the temperature at an arbitrary 
point under three-dimensional heat conduction can be expressed as: 

T(x, y, z, t) = N(x, y, z) qe
T(t), (17)  

where N is the shape function matrix of the temperature field [62], and 
qe

T represents the local nodal temperatures of the element. By 
substituting Eq. (17) into Eq. (16), the governing equation of the tran-
sient heat conduction is further recast as: 

(
δqe

T

)T
(

Me
T q⋅

e
T +Ke

T qe
T − Qe

T

)

= 0 , (18)  

where the element matrices can be derived as:   

∫

Va

ρacδT
∂T
∂t

dVa −

∫

Va

ρaδTQpdVa −

∫

Sa

δTqudSa −

∫

Sa

δTqldSa −

∫

Sa

δThT(Tc − T)dSa−

∫

Va

[

δ
(

∂T
∂x

)(

kx
∂T
∂x

)

+ δ
(

∂T
∂y

)(

ky
∂T
∂y

)

+ δ
(

∂T
∂z

)(

kz
∂T
∂z

)]

dVa = 0
, (16)   

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Me
T =

∫

Va

ρcNTNd Va

Ke
T =

∫

S2

hT NTNdS2 +

∫

Va

[

kx

(
∂N
∂x

)T(∂N
∂x

)

+ ky

(
∂N
∂y

)T(∂N
∂y

)

+ kz

(
∂N
∂z

)T(∂N
∂z

)]

d Va

Qe
T =

∫

Va

NTQpd Va +

∫

Sa

NTqud Sa +

∫

Sa

NTqld Sa +

∫

Sa

TchT NTqe
T d Sa

. (19)   
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It is worth noting that the temperature vector qe
T is affected by the 

elastic deformation as well as the satellite motion, and the interaction 
prevents solving the time-dependent qe

T directly from the heat conduc-
tion equations. 

Moreover, the local temperature vector of the ith element qe
T can be 

extracted from the global temperature vector of the system qT by the 
Boolean matrix Bi: 

qe
T = BiqT . (20) 

On this basis, the governing equation of the heat conduction for the 
system is determined as: 

MT q⋅ T + KT qT − QT = 0 (21)  

where the generalized matrices MT, KT and QT take the forms as: 

MT =
∑n

i=1
BT

i Me
T Bi, KT =

∑n

i=1
BT

i Ke
T Bi, QT =

∑n

i=1
BT

i Qe
T Bi. (22) 

The temperature constraints can be further taken into account by 
introducing the Lagrange multiplier vector λT. Finally, the transient heat 
conduction model of the system is obtained as: 
⎧
⎨

⎩

MT q⋅ T + KT qT − QT + ΓT
T λT = 0

Γ (qT , t) = 0
, (23)  

where ΓT is the Jacobian matrix of the temperature constraint equation 
Γ (qT, t) = 0. 

3. Thermoelastic formulation of the antenna panel in absolute 
nodal coordinates 

After obtaining the governing equation of heat conduction, we will 
focus on the dynamic response of the flexible system with thermal 
deformation. In this section, the thermoelasticity of the antenna panel 
will be incorporated into the motion equations of the antenna panel. 
Furthermore, an enhanced mathematical model will be developed to 
improve the solving efficiency. 

3.1. Dynamic response of the flexible system with thermal deformation 

Considering the shortcomings of the conventional finite element 
method and floating reference frame [56], a thermoelastic model of the 
antenna panel is developed via an enhanced absolute nodal coordinate 

formulation in this section. Note that the thickness and transverse 
deformation of the antenna panel are small compared to its length and 
width. Thus, it is appropriate to utilize the thin plate theory to describe 
the deformation of the panel. 

For the thin plate, as illustrated in Fig. 3, the displacement field of the 
element only depends on the coordinates x and y. Different from the 

classical finite element method, the gradients rather than rotation angles 
are adopted to discard the traditional assumption of infinitesimal rota-
tion, and the plate element with 36 degrees of freedom is described as:   

where r1, r2, r3 and r4 are the global position vectors of nodes A, B, C and 
D, respectively. In this formulation, an arbitrary point of the plate can be 
determined by: 

r = Sp(x, y, z)e, (25)  

where Sp is the shape function matrix as described in [63]. By using the 
virtual work principle, the mass matrix is derived as: 

Me
P =

∫

V

ρST
p SpdV, (26)  

where ρ is the density of the antenna panel. It can be seen from Eq. (26) 
that the mass matrix always remains constant since it only depends on 
the intrinsic properties and dimensions of the plate. As a result, both the 
centrifugal and Coriolis inertia forces are eliminated in the dynamic 
analysis. 

Considering the thermal stress, the Green-Lagrange strain tensor ε is 
modified as [64]:  

where ϖ1 and ϖ2 are the thermal expansion coefficients along x and y 
directions, respectively, and ΔT1 and ΔT2 are the corresponding tem-
perature differences. Besides, the curvature vector κ is formulated as: 

Fig. 3. Four-node thin plate element with the absolute nodal coordinate formulation. 
Gradients of absolute position vectors instead of rotations are adopted as nodal 
coordinates. The displacement field of the thin plate element is described by the 
reduced set that is only dependent on the spatial coordinates x and y. 

e =

[

rT
1 ,

(
∂r1

∂x

)T

,

(
∂r1

∂y

)T

, rT
2 ,

(
∂r2

∂x

)T

,

(
∂r2

∂y

)T

, rT
3 ,

(
∂r3

∂x

)T

,

(
∂r3

∂y

)T

, rT
4 ,

(
∂r4

∂x

)T

,

(
∂r4

∂y

)T
]T

, (24)   

ε =
[
εxx, εyy, 2εxy

]T
=

[
1
2

(
∂r
∂x

)T(∂r
∂x

)

−
1
2
− ΔT1ϖ1,

1
2

(
∂r
∂y

)T(∂r
∂y

)

−
1
2
− ΔT2ϖ2,

(
∂r
∂x

)T(∂r
∂y

)]T

, (27)   
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κ =
[
κxx, κyy, 2κxy

]T
=

⎡

⎢
⎢
⎢
⎣

(
∂2r
∂x2

)T
n

‖ n‖3 ,

(
∂2r
∂y2

)T
n

‖ n‖3 , 2

(
∂2r
∂x∂y

)T
n

‖ n‖3

⎤

⎥
⎥
⎥
⎦

T

,n =
∂r
∂x

×
∂r
∂y
.

(28) 

According to the Kirchhoff theory, the strain energy of the thin plate 
element under both axial and bending effects is 

U =
1
2

∫

Vf

εTEεεdVf +
1
2

∫

V

κTEκκdVf . (29) 

For the isotropic homogenous material, the elastic coefficient 
matrices are defined as: 

Eε =
Ea

1 − ν2

⎡

⎢
⎢
⎣

1 ν 0

ν 1 0

0 0 (1 − ν)/2

⎤

⎥
⎥
⎦, Eκ =

h3

12
Eε, (30)  

where Ea is the Young’s modulus, ν is the Poisson’s ratio, and h is the 
thickness of the antenna panel. 

The elastic force of the plate element Qe
P is further derived as: 

Qe
P =

(
∂U
∂e

)T

= Qε + QK (31)  

with the components defined as below:  

where Vf is the volume of the plate element. 
According to Eq. (25), the following relationships stand:  

where the vectors Sx and Sy denote the partial derivatives of Sp with 
respect to the coordinates x and y, respectively. 

Using the standard assembling process [65], the motion equations of 
the antenna panel can be developed as: 

Mq̈ + Qs(q,qT) − Qf = 0. (34) 

In this equation, q is the global nodal coordinate vector of the 

system, and q̈ is the generalized acceleration vector. M, Qs, and Qf are 
the generalized matrices of mass, elastic forces, and external forces, 
which are given by 

M =
∑n

i=1
TT

i Me
PTi, Qs =

∑n

i=1
TT

i Qe
PTi, Qf =

∑n

i=1
TT

i Qe
w. (35) 

Here, Ti is the Boolean matrix of the displacement field that extracts 
Qe

w is the external force that is imposed on the element. 
In addition, considering the energy dissipation in the material due to 

internal friction, the damping force Qd is expressed as: 

Qd = Dd⋅q = (αdM+ βdK)q̇, (36)  

where Dd is the damping matrix. As formulated in previous research 
[56], the Rayleigh damping is adopted to evaluate Dd as a linear com-
bination of mass and stiffness matrices with two damping coefficients 
αd and βd. According to the physical meaning of the stiffness matrix, K is 
calculated by: 

Qd =
∂Qs(q, qT)

∂q
. (37) 

Mathematically, the constraint equations Φ can be incorporated by 
introducing a Lagrange multiplier vector λ. Finally, considering the 
thermal deformation, the dynamic response of the flexible system can be 
characterized in a compact form as below: 

{
Mq̈ + ΦT

q λ + Qd + Qs(q, qT) − Qf (q, ⋅q) = 0
Φ(q, t) = 0

(38)  

where Φq is the Jacobi matrix of kinematic constraint equations. 

3.2. Fast evaluation of elastic forces and their Jacobian matrices 

It can be seen from Eq. (32) that high nonlinearities exist in the 
relationship between the elastic forces and nodal coordinates. Moreover, 
the motion equations of complex structures can only be solved by 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Qε =

∫

Vf

Ea

1 − ν2

(

εxx
∂εxx

∂e
+ εyy

∂εyy

∂e

)

+
2Ea

1 + νεxy
∂εxy

∂e
+

νEa

1 − ν2

(

εxx
∂εyy

∂e
+ εyy

∂εxx

∂e

)

dVf

Qκ =

∫

Vf

Eah3

12(1 − ν2)

(

κxx
∂κxx

∂e
+ κyy

∂κyy

∂e

)

+
Eah3

6(1 + ν)κxy
∂κxy

∂e
+

νEah3

12(1 − ν2)

(

κxx
∂κyy

∂e
+ κyy

∂κxx

∂e

)

dVf

(32)   

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂εxx

∂e
= ST

x Sxe

∂εyy

∂e
= ST

y Sye

∂εxy

∂e
= ST

x Sye

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂κxx

∂e
=

1
‖ n‖3

[(
∂3r

∂x2∂e

)T

n +

(
∂n
∂e

)T∂2r
∂x2

]

−
3

‖ n‖5

(
∂2r
∂x2

)T

n
(

∂n
∂e

)T

n

∂κyy

∂e
=

1
‖ n‖3

[(
∂3r

∂y2∂e

)T

n +

(
∂n
∂e

)T∂2r
∂y2

]

−
3

‖ n‖5

(
∂2r
∂y2

)T

n
(

∂n
∂e

)T

n

∂κxy

∂e
=

1
‖ n‖3

[(
∂3r

∂x∂y∂e

)T

n +

(
∂n
∂e

)T ∂2r
∂x∂y

]

−
3

‖ n‖5

(
∂2r

∂x∂y

)T

n
(

∂n
∂e

)T

n

, (33)   
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implicit algorithms, where the Jacobian matrix of the elastic force is 
indispensable. Since numerical differentiation is computationally inef-
ficient and inaccurate, an enhanced solving strategy will be developed to 
calculate the elastic forces and the corresponding Jacobian matrices. 

For the sake of description, we define: 

D = ST
x Sx,N = ST

y Sy,H = ST
x Sy. (39) 

Thereby, the following expressions can be obtained: 

∂εxx

∂ei
=
∑36

k=1
Dkiek,

∂εyy

∂ei
=
∑36

k=1
Nkiek,

∂εxy

∂ei
=

1
2

(
∑36

k=1
Hkiek+

∑36

m=1
Himem

)

. (40) 

Subsequently, by separating the variables with algebraic manipula-
tions, the ith elastic force (Qε)i induced by the tensile and shear de-
formations is derived as:  

where ei denotes the ith term of the vector e. In order to improve the 
computational efficiency, we especially introduce matrices A1, A2, B1 
and B2 with the definitions as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A1)kmni =

∫

Vf

Ea

2(1 − ν2)(DkmDni +NkmNni)+ν(DkmNni +NkmDni)dVf

(A2)kmni =

∫

Vf

Ea

2(1+ν)(HkmHni +HkmHin)dVf

(B1)ki =

∫

Vf

Ea

2(1 − ν2)(Dki + vNki)dVf

(B2)ki =

∫

Vf

Ea

2(1 − ν2)(Nki + vDki)dVf

. (42) 

In detail, (Aj)kmni (j = 1, 2) is the term in the i-th row and the 
(1296k + 36m + n – 1332)-th column of Aj, and (Bj)ki (j = 1, 2) denotes 
the term in the k-th row and the i-th column of Bj. It is noticeable that A1, 
A2, B1 and B2 are constant matrices, which means that they can be 
reused after initialization. By taking advantage of these invariant 
matrices, the i-th elastic force (Qε)i is recast as 

(Qε)i =
∑36

k=1

∑36

m=1

∑36

n=1

(
(A1)kmni +(A2)kmni

)
ekemen − (1+ 2ΔT1ϖ1)

∑36

k=1
(B1)kiek

− (1+ 2ΔT2ϖ2)
∑36

k=1
(B2)kiek.

(43) 

On this basis, the Jacobian matrix of the elastic force (Qε)i is further 
evaluated as:   

Similarly, the elastic force Qκ that is induced by bending and torsion 
can also be derived, and the corresponding Jacobian matrix of Qκ can be 
calculated accurately and efficiently like Qε. 

In this way, the invariant matrices that can be stored in advance are 
introduced to the derived analytical solutions, and the formulation of 
elastic forces is successfully separated from the variable nodal co-
ordinates. That is, the developed method avoids calculating the inte-
gration over the volume of the element repeatedly and tediously. 
Consequently, the elastic forces and corresponding Jacobian matrices 
are solved precisely, and the computational efficiency is significantly 
improved. 

(Qε)i =

∫

Vf

Ea

1 − ν2

(

εxx
∂εxx

∂ei
+ εyy

∂εyy

∂ei

)

+
2Ea

1 + νεxy
∂εxy

∂ei
+

νEa

1 − ν2

(

εxx
∂εyy

∂ei
+ εyy

∂εxx

∂ei

)

dVf

=

∫

Vf

Ea

2(1 − ν2)
∑36

k=1

∑36

m=1

∑36

n=1
[(DkmDni + NkmNni) + ν(DkmNni + NkmDni)]dVf (ekemen)+

∫

Vf

Ea

2(1 + ν)
∑36

k=1

∑36

m=1

∑36

n=1
(HkmHni + HkmHin)dVf (ekemen)−

∫

Vf

Ea

2(1 − ν2)
∑36

n=1
[(1 + 2ΔT1ϖ1)(Dni + vNni) + (1 + 2ΔT2ϖ2)(Nni + vDni)]dVf en

, (41)   

∂(Qε)i

∂ej
=
∑36

m=1

∑36

n=1

[
(A1)mnij + 2(A1)mjni

]
emen +

∑36

m=1

∑36

n=1

[
(A2)mnij + (A2)mjni + (A2)jmni

]
emen −

[
(1 + 2ΔT1ϖ1)(B1)ki + (1 + 2ΔT2ϖ2)(B2)ki

]

. (44)   
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4. Electromechanical analysis of the piezoelectric energy 
harvester 

According to the comparison in the introduction, a piezoelectric 
transducer is preferred to be structurally integrated into the antenna 
panel for converting the thermally induced vibration into electricity. 
This section will develop a distributed-parameter electroelastic model of 
the piezoelectric transducer installed on the antenna panel to charac-
terize the voltage output response. Moreover, the piezoelectric effect on 
the structural vibration will also be quantified. 

4.1. Governing equation of the piezoelectric transducer 

As shown in Fig. 4, a piezoelectric patch with the size of lp (length) ×
wp (width)× hp (thickness) is boned on the antenna panel. The patch 
covers a rectangular area with two opposite corners at (x1, y1) and (x2, 
y2). Assuming that the size of the thin piezoelectric patch is much 
smaller than that of the antenna panel, its contributions to the global 
mass and stiffness matrices are thus negligible [66]. 

Since the piezoelectric material is generally transversely isotropic, its 
material properties in the constitutive equation satisfy: 

cp
11 = cp

22, cp
12 = cp

21, ep
31 = ep

32. (45) 

Here, cp
11cp

12cp
22cp

66 and cp
31 are the components of elastic stiffness, and 

ep 31 is the piezoelectric stress constant. In this study, the piezoelectric 
patch is polarized along the z-axis, and the electric field is given by: 

Ee
1 = 0, Ee

2 = 0, Ee
3 = − V(t)

/
hp, (46)  

where V(t) denotes the generated electrical potential difference, namely, 
the output voltage. 

According to the material properties, the electroelastic constitutive 
equations of the piezoelectric transducer are expressed in a reduced 
form as: 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fp
1

Fp
2

Fp
6

De
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cp
11 cp

12 0 − ep
31

cp
12 cp

22 0 − ep
31

0 0 cp
66 0

ep
31 ep

31 0 εp
33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sp
1

Sp
2

Sp
6

Ee
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

C e
p − ee

p
(

ee
p

)T
εp

33

⎤

⎥
⎦

[
Se

p

Ee
3

]

, (47)  

where Fp
1 and Fp

2denote the normal stress components in the directions of 
x and y axes, respectively; Fp

6 represents the shear stress in the x-y plane; 
Sp

1 and Sp
2 are the normal strain components along x and y axes, 

respectively; and Sp
6 is the shear strain component in the x-y plane. These 

strain components satisfy the following relationships: 

Sp
1 = − hpc

∂2w (x, y, t)
∂x2 , Sp

2 = − hpc
∂2w (x, y, t)

∂y2 , Sp
6 = − hpc

∂2w (x, y, t)
∂x∂y

, (48)  

where hpc is the distance from the center layer of the piezoelectric patch 
to the neutral surface of the antenna; w (x, y, t) is the transverse 
deflection of the panel at position (x, y) and time t; D e 3is the electric 
displacement in the direction of z-axis. Besides, ϵp

33 is the equivalent 
permittivity constant. These components can be expressed as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cp
11 =

s11

(s11 + s12)(s11 − s12)
, cp

12 =
− s12

(s11 + s12)(s11 − s12)

cp
66 =

1
s66

, ep
31 =

d31

s11 + s12
, εp

33 = ε33 −
2d2

31

s11 + s12

, (49)  

where s11, s12, and s66 are the elastic compliance parameters, d31 is the 
piezoelectric constant, and ε33 is the permittivity component. 

By adopting the Heaviside function H (⋅) to describe the areas with 
and without piezoelectric coverage, the internal moments of the piezo-
electric patch are formulated as: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mp
1 = [H(x − x1) − H(x − x2)][H(y − y1) − H(y − y2)]

∫

Fp
1zd z

Mp
2 = [H(x − x1) − H(x − x2)][H(y − y1) − H(y − y2)]

∫

Fp
2zd z

Mp
6 = [H(x − x1) − H(x − x2)][H(y − y1) − H(y − y2)]

∫

Fp
6zd z

, (50)  

where the integrals are over the thickness of the piezoelectric patch. 
Under the thermal deformation, the internal bending moments of the 
antenna panel are determined by: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ms
1 = −

Eh3

12(1 − ν2)

(
∂2w (x, y, t)

∂x2 + ν ∂2w (x, y, t)
∂y2

)

Ms
2 = −

Eh3

12(1 − ν2)

(
∂2w (x, y, t)

∂y2 + ν ∂2w (x, y, t)
∂x2

)

Ms
6 = −

Eh3(1 − ν)
12(1 − ν2)

∂2w (x, y, t)
∂x∂y

. (51) 

Moreover, the partial differential equation of a thin plate with a 
small piezoelectric patch [66] is expressed as: 

∂2(Ms
1 + Mp

1
)

∂x2 +
∂2(Ms

2 + Mp
2
)

∂y2 + 2
∂2(Ms

6 + Mp
6
)

∂x∂y
− ρh

∂2w (x, y, t)
∂t2

− cp
∂w (x, y, t)

∂t
= 0.

(52) 

Here, cp is the viscous damping coefficient. By submitting Eqs. (47)– 
(51) into Eq. (52), the governing equation of the piezoelectric transducer 
is derived as:  

Fig. 4. Piezoelectric transducer integrated on the antenna panel. The piezoelectric 
patch is with the size of lp (length) × wp (width)× hp (thickness), and its 
installation position can be determined by the coordinates of two opposite 
corners, namely (x1, y1) and (x2, y2). Excited by the thermally induced vibration 
w (x, y, t) of the panel, the piezoelectric transducer will generate electrical 
potential difference V(t). 
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As formulated above, Eq. (53) describes the relationship between the 
electrical field and the mechanical field. The latter is determined by the 
motion equation of the piezoelectric energy system. In addition, the 
electrical circuit equation is further constructed to quantify the elec-
trical current generated by the piezoelectric patch in response to the 
applied mechanical strain. 

According to Gauss’ flux theorem, the current flowing through the 
resistive load RL is: 

V (t)
RL

=
d
dt

∫y2

y=y1

∫x2

x=x1

De⋅ne dxdy =
d
dt

∫y2

y=y1

∫x2

x=x1

De
3 dxdy, (54)  

where De is the electric displacement vector, and ne is the unit vector 
outward from the electrode surface. Note that the only contribution to 
the inner product in Eq. (54) is from De

3. According to the electroelastic 
constitutive equations shown in Eq. (47), De

3 is equal to 

De
3 = ep

31Sp
1 + ep

31Sp
2 + εp

33Ee
3. (55) 

Substituting Eqs. (48) and (55) into Eq. (54) yields: 

d
dt

∫y2

y=y1

∫x2

x=x1

[

− ep
31hpc

(
∂2w (x, y, t)

∂x2 +
∂2w (x, y, t)

∂y2

)

− εp
33

V (t)
hp

]

dxdy =
V (t)
RL

.

(56) 

For brevity, the capacitance of the piezoelectric patch Cp is defined 

as: 

Cp =
(
lpwpεp

33
) /

hp. (57) 

On this basis, Eq. (56) can be rewritten as: 

Cp
dV (t)

dt
+

V (t)
RL

+ ep
31hpc

∫y2

y=y1

∫x2

x=x1

(
∂3w (x, y, t)

∂x2∂t
+

∂3w (x, y, t)
∂y2∂t

)

dxdy = 0.

(58) 

It is worth noting that the panel curvature can also be described in 
absolute nodal coordinates. According to the Kirchhoff plate theory, the 
mapping relationship is derived as below: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2w (x,y, t)
∂x2 = −

1
z

(
∂r
∂x

)T

[1 0 0 ]T,
∂2w (x,y, t)

∂y2 = −
1
z

(
∂r
∂y

)T

[0 1 0 ]T

∂2w (x,y, t)
∂x∂y

= −
1
2z

(
∂r
∂y

)T

[1 0 0 ]T +
(

∂r
∂x

)T

[0 1 0 ]T
.

(59) 

The above mapping relationship indicates that the third term on the 
left-hand side of Eq. (53) is a function of q, dq/dt, and qT. We have: 

Qv(q, ⋅q,qT) = ep
31hpc

∫y2

y=y1

∫x2

x=x1

(
∂3w (x, y, t)

∂x2∂t
+

∂3w (x, y, t)
∂y2∂t

)

dxdy. (60) 

Consequently, the governing equation of the piezoelectric transducer 
can be rewritten in the concise form as: 

CpV̇ + V
/

RL + Qv(q, ⋅q, qT) = 0. (61)  

4.2. Electromechanically coupled model for the piezoelectric energy 
harvester plate 

After obtaining the governing equation of the piezoelectric trans-
ducer, we will further quantify the piezoelectric effect on the structural 
vibration in this section. For the coupled electromechanical system, the 
generalized form of Hamilton’s principle is expressed as:   

where u is the vector of mechanical displacements along the three axes, 
Sa is the strain vector, Ca is the elastic stiffness matrix of the antenna 
panel, Vp is the volume of the piezoelectric patch, and V is the electrical 
potential difference. Ce

p, Se p and ee p are defined as Eq. (47). Besides, f 
(xi, yi, t) is the ith discrete mechanical force applied at the position (xi, 
yi), and q (xi, yi, t) is the ith electric charge output at the position (xi, yi). 
The total number of the forces and charges is nf and nq, respectively. 

According to the constitutive relations of both the antenna panel and 
the piezoelectric patch, the strain-displacement and field-potential re-
lations can be expressed as: 

Sa = Luu, Ee
3 = Lv V =

(
− 1

/
hp
)

V, (63)  

where the linear differential operator Lu is defined as [67]: 

Eh3

12(1 − ν2)

(
∂4w (x, y, t)

∂x4 +
∂4w (x, y, t)

∂y4 + 2
∂4w (x, y, t)

∂x2y2

)

+ ρh
∂2w (x, y, t)

∂t2 + cp
∂w (x, y, t)

∂t
−

ep
31hpcV (t)[H(x − x1) − H(x − x2)]

[
dδ(y − y1)

d y
−

dδ(y − y2)

d y

]

−

ep
31hpcV (t)[H(y − y1) − H(y − y2)]

[
dδ(x − x1)

d x
−

dδ(x − x2)

d x

]

= 0

. (53)   

∫t2

t=t1

[
∫

ρaδ⋅uT⋅udVa +

∫

ρpδ⋅uT⋅udVp −

∫

δST
a CaSadVa −

∫

δ
(

Se
p

)T
Ce

pSe
pdVp

]

dt+

∫t2

t=t1

[
∫

δ
(

Se
p

)T
ee

pEe
3dVp +

∫

δEe
3

(
Se

p

)T
ee

pdVp +

∫

δEe
3εp

33Ee
3dVp

]

dt+

∫t2

t=t1

[
∑nf

i=1
δuT(xi, yi, t)f(xi, yi, t) +

∑nq

i=1
δV q(xi, yi, t)

]

dt = 0

(62)   
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Lu =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

0 0

0
∂
∂y

0

∂
∂y

∂
∂x

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (64) 

Moreover, based on Eqs. (25) and (35), the displacement vector u 
can be extracted from the generalized coordinates q by: 

u = Sp(e − e0) = Sp(Tiq − Tiq0), (65)  

where e0 and q0 are the local and global absolute coordinates in the 
initial configuration. 

After submitting Eqs. (63)–(65) into Eq. (62), we further utilize the 
variational principle to obtain the electromechanical coupling term ΞV 
(t), and the detailed derivation can be found in [68]. Specifically, the 
electromechanical coupling matrix Ξ is expressed as: 

Ξ =

∫ [
(
LuSpTi

)T
(

ee
p

)T
/

hp

]

dVp. (66) 

Finally, considering the piezoelectric effect on the structural vibra-
tion, the global equations of motion expressed in Eq. (38) are modified 
as: 
{

Mq̈ + ΦT
q λ + Qd + Qs(q, qT) + ΞV − Qf (q, ⋅q) = 0

Φ(q, t) = 0
. (67)  

5. Integrated framework of the multi-physics problem 

As aforementioned, the proposed system is expected to harvest en-
ergy from the antenna panel deformation induced by the time-varying 
thermal load. Since the whole energy harvesting process involves 
thermal-elastic and electromechanical couplings, an integrated frame-
work of the multi-physics problem is unified in this section. 

By taking account of all the couplings established in previous sec-
tions, the governing equations of the system are formulated as: 

Fig. 5. Procedures for implementing the proposed computational framework. The GSSSS time integration scheme, the Newton–Raphson iteration, and the generalized-α 
algorithm are systematically integrated to solve the complicated multi-physics problem with second-order accuracy. The bidirectional thermoelastic interaction can 
be fully taken into account in this developed computational framework. 
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

MT qT + Γ T
T λT + KT qT − QT(q, qT)

Mq̈ + ΦT
q λ + Qd + Qs(q, qT) + ΞV − Qf (q, ⋅q)

CpV̇ + V
/

RL + Qv(q, ⋅q, qT)

Γ (qT , t)
Φ(q, t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (68) 

To solve this complicated multi-physics problem, the mechanical 
displacement field and the transient temperature distribution should be 
first solved interactively and synchronously. Then, the displacement 
field is fed into the electromechanical equation to predict the voltage 
output from the piezoelectric transducer. In order to efficiently imple-
ment this solving strategy and improve the accuracy, an integrated 
computational framework is developed in this section. 

Starting from the heat conduction analysis, the unified GSSSS time 
integration algorithm [69] is extended to solve the transient tempera-
ture in the space and time fields. To be more specific, the heat con-
duction equation given by Eq. (23) is firstly represented in the following 
form of incremental temperature: 
{

MT q̂T(tn) + KT q̄T(tn) + ΓT
T λ̄T(tn) = Q̄T(tn)

Γ (qT , tn+1) = 0
. (69) 

In this equation, the introduced variables are determined as: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̂T(tn) = ⋅qT(tn) + ϑ1Λ6Δ⋅qT

q̄T(tn) = qT(tn) + ϑ1Λ4Δt⋅qT(tn) + ϑ2Λ5ΔtΔ⋅qT

λ̄T(tn) = (1 − ϑ1)λT(tn) + ϑ1λT(tn+1)

Q̄T(tn) = (1 − ϑ1)QT(tn) + ϑ1QT(tn+1)

, (70)  

where ϑi, Λi, and Θi (i = 1, 2,…, 6) are the scaled parameters of the 
GSSSS algorithm [70]. However, different from the typical procedure of 
GSSSS method,Δq̇T cannot be directly obtained by solving Eq. (69) 
because QT depends on the temperature. To tackle the problem, the 
Newton–Raphson iteration is integrated into the GSSSS scheme to seek 
an accurate numerical solution in a more efficient manner. 

If the following residual is still unsatisfactory after the iteration 

[Rg

Rc

]

=

[
MT q̂T(tn) + KT q̄T(tn) + ΓT

T λ̄T(tn) − QT(tn)

Γ (qT , tn)

]

, (71)  

the below correction step is implemented to decrease the residual:   

Then, the state vector for the next numerical iteration step is modi-
fied as: 
⎧
⎪⎪⎨

⎪⎪⎩

⋅qT(tn) = ⋅qT(tn) + ϑ1Λ6Δ⋅qT

qT(tn) = qT(tn) + ϑ2Λ5ΔtΔ⋅qT

λT(tn) = λT(tn) + ΔλT

. (73) 

If the difference of the norm of two consecutive correction vectors is 
smaller than the prescribed tolerance, namely, 

‖ Δrk+1 − Δrk‖2 < 10− 8, (74)  

the Newton-Raphson iteration converges, and the unknown vectors at 
the next time step are determined as: 
⎧
⎪⎪⎨

⎪⎪⎩

⋅qT(tn+1) = ⋅qT(tn) + Δ⋅qT

qT(tn+1) = qT(tn) + ζ4Δt⋅qT(tn) + ζ5ΔtΔ⋅qT

λT(tn+1) = λT(tn) + ΔλT

. (75) 

After the transient temperature field is solved, the generalized-α al-
gorithm [71] is further adopted to obtain the vibration response of the 
constrained mechanical system. In analogy with the iteration matrix 
shown as Eq. (71) in the Newton–Raphson method, the generalized-α 
algorithm also requires solving the nonlinear equations iteratively, and 
the Jacobian matrix of the elastic force in each time step has to be 
computed. As formulated in Eq. (43), the nodal coordinate vector and 
temperature difference have been taken out of the integral. By storing 
the invariant matrices in advance, the calculation of the elastic force is 
no longer a burdensome task. Moreover, the exact expression that is 
given in Eq. (44) enables the computation of the Jacobian matrix 
directly, reducing the computational cost in numerical differentiation. 
Once the generalized-α algorithm is converged, the vibration response of 
the panel can be updated, so can the transverse deflections and bending 
moments. Based on the determined q,q̇ and qT, the voltage output of the 
piezoelectric transducer can be calculated from Eq. (61). 

In this computational framework, the integrated GSSSS time inte-
gration scheme, the Newton–Raphson iteration and the generalized-α 
algorithm are of second-order accuracy [70,71]. In this process, the 
system variables are iteratively solved at a time step of 10–4 s. Fig. 5 
presents the step-by-step procedures for implementing the proposed 
computational framework. 

6. Case study 

In this section, the proposed method will be utilized to predict the 
dynamic response of an antenna panel under time-varying thermal load, 
particularly the capability of the attached piezoelectric transducer to 
harness energy from thermally induced vibrations. Moreover, the results 
from the proposed method will be verified by comparing with the 
simulation results. 

6.1. Numerical example 

As depicted in Fig. 6, a thin piezoelectric patch is bonded on the 
surface of an antenna panel. Considering that the transmit/receive 
module cells are uniformly distributed in the middle of the panel, it is 

preferred to integrate the piezoelectric patch on the frame at the edge of 
the panel. This layout not only ensures the bonding reliability, but also 
avoids the interference with functional components. The geometric and 
material parameters of the antenna panel and piezoelectric patch are 
listed in Table 1 and Table 2, respectively. Besides, the satellite orbit 
height is 631 km. The angle between the antenna panel and the tangent 
plane of the Earth is 7.92◦. To consistently describe the multi-physics, a 
global coordinate system Og-xgygzg is established with the original point 
Og at the midpoint of the left surface of the panel, as illustrated in Fig. 6. 

In reality, when the satellite moves from the twilight zone into the 
light zone, the temperature of the antennal panel changes dramatically, 
and the sudden heating on the panel can cause large deformation and 

Δr =

[Δ⋅qT

ΔλT

]

= −

[
∂
(
MT q̂T(tn) + KT q̄T(tn) + ΓT

T λ̄T(tn) − QT(tn)
)/

∂⋅qT ΓT
T

∂ΓT/∂⋅qT 0

]− 1[Rg

Rc

]

. (72)   
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thermal flutter. Therefore, this typical transition process is pretty suit-
able to implement energy harvesting. We will take it as an example to 
investigate the feasibility of the proposed scheme. The moment when 
the satellite is at the boundary between the shadow and twilight zones is 
set as t0. Besides, the temperature of the panel is initialized as the 
ambient temperature, i.e., T0 = 273.15 K. 

7. Results and discussions 

Given the orbit height, the satellite needs to rotate 0.58◦ to get out of 
the twilight zone. According to the law of universal gravitation, the time 
to complete the movement is calculated to be 8.64 s. During this tran-
sition process, the lower surface of the panel is an anode, while the upper 
surface is a cathode. The time-varying heat fluxes applied on the antenna 
panel are determined and shown in Fig. 7. It can be seen that the total 
heat flux on the lower surface dramatically increases from 129.13 to 
1142.85 W/m2, while that of the upper surface is nearly unchanged. 

The temperature field is discretized using the 3D 8-node hexahedral 

element. The interaction between heat conduction and structural 
deformation is fully considered. In order to guarantee the accuracy in 
the iterative calculation, the maximum integration step-size is set to 
10− 4 s, and the absolute tolerance is 10− 8. The calculated temperature 
distributions of the antenna panel at different instants are illustrated in 
Fig. 8. The temperature on the left edge of the panel rises at a higher rate 
than on the right edge. Moreover, significant temperature differences 
exist between the lower surface and upper surfaces. 

To comprehensively reveal the thermal-elastic-electric coupling ef-
fect on the antenna panel, the results of both partially and fully coupled 
models are provided. In the partially coupled model, the absorbed heat 
flux is directly determined from the initial configuration. In other words, 
the bidirectionally coupled problem is simplified into a unidirectionally 
coupled one. As to the fully coupled method, after solving the thermally 
induced deformation in each time step, it is required that the absorbed 
thermal energy should be updated timely to evaluate the effect of 
structural deformation on the incident angle of heat flux. Particularly, it 
is pointed out that both partially and fully coupled models incorporate 
the interaction between the piezoelectric effect and the structural vi-
bration. Based on the developed analytical model and computational 
framework, the dynamic response of the piezoelectric energy harvester 
is determined. Moreover, this multi-physics problem is also simulated 
using the software COMSOL (version 5.4). For these simulations, the 
Rayleigh damping coefficients αd and βd are set as 1.357 × 10–3 s–1 and 

Fig. 6. Schematic of antenna panel deformation under spatial heat fluxes. The 
incident angles of heat fluxes are actually time-varying because of the defor-
mation and vibration of the antenna panel. By attaching a piezoelectric patch 
onto the antenna panel, the kinetic energy from the thermally induced vibration 
is converted into electrical energy. 

Table 1 
Geometric and material parameters of the antenna panel.  

Properties Nomenclature Values 

Length l 1.2 m 
Width ws 0.8 m 
Thickness h 0.05 m 
Mass density ρa 1.75 × 103 kg/m3 

Elastic modulus Ea 2.07 × 1011 Pa 
Poisson’s ratio ν 0.3 
Thermal expansion coefficients ϖ1 and ϖ2 2.3 × 10–4 1/K 
Conductivity coefficients kx, ky and kz 1.5 W/(m K) 
Specific heat capacity c 952 J/(kg K) 
Absorptivity of the solar radiation αm 0.79 
Absorptivity of the Earth-emitted radiation αe 0.7 
Emissivity of the surface ςp 0.7  

Table 2 
Geometric and material parameters of the piezoelectric patch.  

Properties Nomenclature Values 

Length lp 300 mm 
Width wp 100 mm 
Thickness hp 2 mm 
Elastic compliance s11 16.50 pm2/N 
Elastic compliance s12 –4.78 pm2/N 
Elastic compliance s66 42.60 pm2/N 
Piezoelectric constant d31 –190 pm/V 
Permittivity constant ε33 10.38 nF/m  

Fig. 7. Spatial heat fluxes applied on the antenna panel. When the satellite travels 
from the twilight zone into the light zone, the lower surface of the panel is an 
anode, while the upper surface is a cathode. The total heat fluxes applied on the 
upper and lower surfaces are of different densities. Sudden heating occurs on 
the lower surface of the panel. 

Fig. 8. Temperature distribution of the antenna panel at different instants. During 
the transition from the twilight zone into the light zone, the temperature rises at 
the left and right edges of the lower and upper surfaces are different. 
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5.289 × 10–5 s, respectively, which are the original and nominal values 
of the material. After a mesh convergence study, the PEH is discretized 
with finer meshes, as graphically depicted in Fig. 9(a). The iteration 
errors between the numerical and exact solutions are shown in Fig. 9(b), 
which indicates that the maximum error is smaller than 10–2. Besides, 
the difference between the voltage outputs obtained by the finer and 
extra-fine mesh models is slight. Therefore, the result from the finer 
mesh model can be deemed as converged with satisfactory accuracy. 

For the multi-physics coupled problem, Fig. 10(a) presents the 
temperature rise of the antenna panel at the right edge of the lower 
surface. Fig. 10(b) depicts the bending deformation at the midpoint of 
the right surface. Fig. 10(c) shows the voltage output responses from 
different methods. As seen in Fig. 10, the numerical predictions of the 

fully coupled model are in good agreement with the simulations. How-
ever, the deflections and voltages obtained by the partially coupled 
model are larger than those of the fully coupled model at the same 
instant, and their vibration amplitudes are also different. To explain this 
phenomenon, the normal unit vector of a finite element at the right top 
corner is illustrated, and its projection onto the zg axis is given in Fig. 11. 
According to the physical definition, the projection reflects the cosine of 
the incident angle of the heat flux. It is observed that the projection 
tends to gradually decrease with unsmooth fluctuations, which means 
that the incident angle varies with the structural deformation. In other 
words, thermal deformation also has a backward effect on thermal ab-
sorption. For this reason, the partially coupled model that neglects the 
angular change cannot accurately reveal the thermal flutter effect, and 

Fig. 9. Simulation in COMSOL. The meshes are shaped by the physics control at the finer level to strike a balance between accuracy and efficiency. For the tem-
perature, displacement and voltage, their maximum iteration errors between the numeric and exact solutions are smaller than 10–2. 

Fig. 10. Comparison of the results obtained from the simulation, partially and fully coupled models. The partially coupled model only considers the unidirectional coupling 
between heat absorption and structural deformation. The fully coupled model developed in this work takes the bidirectional thermoelastic interaction into account. 
Additionally, the bidirectional coupling between the piezoelectric effect and the structural vibration is incorporated into the three models. 
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this error further propagates into the results of the voltage. 
As highlighted in Fig. 10(b), another interesting feature is the 

occurrence of the high-frequency “beating” phenomenon. It is found 
that the high-frequency thermal flutter is associated with two factors: 
(1) the oscillation of thermoelastic forces; (2) the phase difference be-
tween the thermoelastic forces and the structural displacements. As 
shown in Fig. 12, a phase difference exists between the dynamic re-
sponses of the thermoelastic force and the antenna panel deflection, 

triggering the thermoelastic force to do work on the antenna panel. If the 
sum of work done by thermoelastic and damping forces is positive, the 
amplitude of the thermally induced vibration will increase continuously, 
i.e., the high-frequency flutter occurs. In contrast, if the sum of work 
done by thermoelastic and damping forces is negative, the oscillation 
amplitude decays with time and the thermal flutter fades away. 

The differences between the numerical predictions and simulation 
results are quantified in Fig. 13. The maximum relative errors of the 
deflection and generated voltage are smaller than 5.7%, indicating that 
the analytical solutions are of satisfactory accuracy. In addition, it takes 
507,164.8 s to complete the numerical calculation of the transition 
process with MATLAB 2020b, while 647,266.3 s to complete the multi- 
physics simulation with COMSOL. It is obvious that the developed 
computation strategy has a higher efficiency in dealing with the 
thermal-mechanical-electrical coupling problem. 

As discussed above, the proposed method can effectively and effi-
ciently predict the dynamic response of the energy harvesting system. 
Moreover, the full consideration of the interaction between structural 
deformation and heat absorption yields a more accurate prediction of 
the voltage output response. During the transition from the twilight to 
the light zone, it is shown that the output voltage gradually increases 
with fluctuations. Given that the resistive load is of 1 kΩ, the efficiency 
of converting the thermal energy into electrical energy is presented in 
Fig. 14. In terms of the single piezoelectric patch, although the con-
version efficiency of the system is lower than that of the solar batteries, 
two fascinating features of the designed system are worth being 

Fig. 11. Time history of the projection of the normal unit vector. The projection 
variation indicates that the incident angle of the heat flux is time-varying; thus, 
the structural deformation also has a backward effect on the heat absorption. 

Fig. 12. Phase difference between the thermoelastic forces and the structural dis-
placements. When the high frequency “beating” phenomenon occurs, the ther-
moelastic forces oscillate, and there exists a phase difference between the 
thermoelastic forces and the structural displacements. 

Fig. 13. Relative error between the numerical and simulation results. The maximum relative error of the deflection and the output voltage is smaller than 6% and 4%, 
respectively, which indicates that the results obtained from the fully coupled model are of good accuracy. 

Fig. 14. Conversion ratio of the thermal energy into electrical energy. In terms of 
the single piezoelectric patch, the conversion efficiency of the system increases 
with the satellite movement from the twilight zone into the light zone, and the 
maximum conversion efficiency is less than 1.6%. 
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highlighted. On the one hand, the maximum output voltage is up to 
202.169 V, which is enough to drive sensors and actuators for shape 
adjustment. On the other hand, the electric energy applied to reduce the 
thermal deformation originates from thermally induced vibration, and 
this operation enables a new paradigm of physical intelligence. Note 
that since the upper and lower surfaces of the antenna panel periodically 
turn to the sunny side, the output power will not monotonically increase 
as the temperature difference diminishes. In fact, it can be observed in 
Fig. 10(b) that the amplitudes of the thermally induced vibration 
approach zero after the satellite enters the light zone. That is, the high- 
frequency beating phenomenon tends to disappear gradually. These 
results provide pivotal insights into the design considerations of piezo-
electric systems for harnessing energy from thermally induced vibra-
tions of antenna panels. 

8. Conclusions 

This paper has, for the first time, proposed integrating a piezoelectric 
transducer onto the antenna panel of a satellite in outer space to harvest 
energy from thermally induced vibrations. A novel analytical method-
ology and a computational framework have been developed to reveal 
the dynamic responses of the system under the complicated thermal- 
mechanical-electrical coupling effect. The accuracy and efficiency of 
the developed method have been verified through a comparison with the 
simulation results. Based on numerical results and technical discussions, 
some main conclusions are remarked as follows:  

(1) The proposed fully coupled model can accurately and efficiently 
predict the transient response of the heat conduction, thermally 
induced vibration, and piezoelectric effect, providing compre-
hensive insights into the coupling characteristics of the multi- 
physics problem.  

(2) The bidirectional interaction between the elastic deformation 
and the heat absorption plays a significant role in the thermally 
induced vibration of the antenna panel. It is inappropriate to 
assume that the temperature distribution is independent of the 
panel deflections.  

(3) The deflection of the antenna panel under the time-varying 
thermal loading contains the quasi-static displacement and the 
superimposed vibration. If the phase difference exists between 
the oscillating thermoelastic forces and the structural displace-
ments, the thermal flutter may occur.  

(4) The maximum output voltage of the designed PEH is up to 
202.169 V, which shows the potential of harvesting energy from 
the thermally induced vibration of antenna panels to produce a 
considerable power output for wireless electronic devices. 

To summarize, this study not only innovatively extends the appli-
cation of energy harvesting technology to the circumstances with ther-
mally induced vibration phenomena, but also provides a comprehensive 
analytical and computational scheme for predicting the dynamic re-
sponses of thermal-mechanical-electrical coupled systems. Moreover, 
the investigation results offer useful insights into the design of PEH, 
which employs the thermally induced vibration as a potential power 
supply. Since the time-space scale of the problem is large and more 
practical constraints are required to be considered, the distribution and 
parameters of piezoelectric patches will be refined in further works. 
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